On this page:

Competition Logistics   |   Ballooning FAQ

.Competition Logistics:

Who do I contact if I have any questions?

You are invited to contact msaad@space.edu


How many teams will be selected for the 2018 competition?

This year, we will select nine teams. The FAA has specific payload weight and density regulations, which affects how many teams we allow in the competition.   


If I want to use sensors, which ones should I use in my payload?

We permit you to use any sensor or data logger you wish to use. Past teams have used:

We also recommend:

What if I have questions about setting up and operating my components and circuit?

Digikey offers a 24/7 real-time chat with online representatives about technical engineering where you can ask any questions you have regarding your project implementation.

Soldering components together is not always required for a given electronics project, but if it is, we also recommend Adafruit’s Guide to Excellent Soldering:


My proposal was selected to fly in the competition. Where do I get the funds to support my students?

The NDSGC will reimburse all payload construction expenses, up to $250.00. In order to be reimbursed, please save all of your receipts. In addition, we will reimburse all lodging and transportation expenses that your team spends on integration and launch day. NEW in 2018: NDSGC will reimburse hotels (as soon as possible), instead of the direct billing before Integration Night. 


What can I launch in my payload?

Past teams have studied many different subjects, such as astronomy, physics, biology, chemistry, engineering, atmospheric science, and geology. As long as you do not launch any living creatures (no pets!), you can send it into the stratosphere. Plants and food are acceptable. If you are interested in microbiology experiments, please talk to the coordinators first. 


I have limited class time to devote to a balloon competition. How time consuming will this be?

We understand class time is valuable and competitions can be daunting. However, many different subjects directly relate with our balloon launches and the subject matter can be integrated into your lesson plans. But remember, your team can meet up after school. This competition begins in October and is completed at the end of November (weather permitting).


This is a competition. What are the prizes for the first place team?

The grand prize winner will win the opportunity to participate in a NDSGC sponsored STEM-activity (ex. Gateway to Science Center, Fargo Air Museum, etc.) or a trip to the John D. Odegard School of Aerospace Sciences at the University of North Dakota. The trip to UND includes a tour of the Aviation facilities (including a high altitude chamber), Space Suit Lab, spacecraft simulators, and the UND Observatory.


What are some important things to consider when my team is designing our payload?

You may want to consider the atmospheric conditions that impact our balloon flight. Turbulent winds, cold temperatures, and air resistance all affect your experiments. Styrofoam containers are a popular choice. They are lightweight, durable, and insulating.

If your payload requires batteries, we recommend teams obtain lithium batteries. Lithium, compared to alkaline, have a higher tolerance and lifespan in such cold temperatures and also the highest energy to weight ratio of affordable batteries.


I am a teacher who has never participated on a high altitude balloon launch before. How do I get started?

Teachers with all experience levels are encouraged to propose an experiment. If your students need some help brainstorming experiment ideas, feel free to contact msaad@space.edu. We will help guide your team with selecting sensors and topics of study..

High Altitude Balloon Questions:

How large is a High Altitude Balloon?

The NDSGC possesses a wide range of balloons, spanning from 300 to 3000 grams. For the 2018 NSBC launch, we will use 1500-gram balloons. When inflated with helium, we release them into the air when they are about 5 feet in diameter. At altitude, the balloon expands to be around 30 feet in diameter!


What specific weather conditions could postpone a balloon launch?

Besides the obvious cancellation due to precipitation, we have to monitor cloud cover. Balloon launches require less than 50% cloud cover, to ensure the safety of nearby pilots. The UND launch team will make a go or no-go call 24 hours before integration night.


What altitude will my experiment reach?

We strive to reach an altitude of 100,000 feet (30 km) above sea level. Most commercial aircraft travel around 30-40,000 feet! At our high altitude, students will be able to see the curvature of the Earth, a thin blue atmosphere line, and the darkness of space. The views are stunning when you’re above 99% of the atmosphere!


Where in the atmosphere does the balloon burst?

There are five layers of Earth’s atmosphere (from Earth’s surface ascending outwards): the troposphere, stratosphere, mesosphere, thermosphere, and exosphere. The high altitude balloons travel through the troposphere and into the stratosphere, where they burst. In the stratosphere, there is an ozone layer, a region of O3 that the balloons travel through. 


After we launch the balloon, how will it descend back to Earth’s surface?

As the balloon rises through the air, the atmospheric pressure drops and the latex balloon expands. At a certain point in the stratosphere, the balloon can no longer stretch and bursts! As the payloads fall back to Earth, a parachute deploys, safely bringing them back to the ground.


How do you locate the balloon throughout its flight?

  1. For our primary system, the tracking team uses the Iridium Satellite Network, which lets us know where the balloon is every 20 seconds. This is available to visualize on a map, using the internet. That means anyone, no matter where they live, can track with us!
  2. For a backup system, we use a SPOT tracker. This is another GPS device, sending us the balloon’s location every ten minutes. Then, with some good fortune, cooperative landscapes, and trustworthy binoculars, our tracking teams will be able to locate our space-faring experiments.
  3. Additionally, ND Space Grant has multiple licensed HAM radio operators on their chase team. If we attach a HAM transceiver on the balloon train, we can use this method as well. These team members track the balloon’s location every 30 seconds after receiving GPS location packets from the radio.


Jump to the top


Leave a Reply

All comments will be reviewed prior to posting.