#### **Chirality Dependent Carbon Nanotube Separation for Lightweight Electronics**

Assist. Prof. Muhammet Erkan Köse Department of Chemistry & Biochemistry, NDSU

tube axis





- Carbon nanotube samples have various tubular configurations.
- SWNTs also form bundles due to strong π-π interactions.
- All of the production methods for SWNTs yield mixture of metallic and semiconducting nanotubes.
  - Chirality specific SWNTs are needed if these promising materials are aimed to be used in technological applications.
- Separation techniques;
  - Surfactant assisted dispersion
  - Density gradient ultracentrifugation
  - ✓ Polymer wrapping
  - Interactions with polyaromatic hydrocarbons





# **Relevance to NASA**

- Proposed research overlaps with the RFAs such as Small Satellite Research, Development, and Construction, Materials Science Research, and Planetary Space Suit Research.
- Single-walled carbon nanotubes are 50-100 times stronger than steel at a sixth the weight.
- Possible projects would be related to life-support systems, including gas and water purification.
- Biomedical applications for human spaceflight are also of interest.
- Other possible projects include energy storage, thermal protection, structural or multifunctional materials, or sensors.
- Regarding power components and materials, emphasis is placed on the development of hightemperature, high frequency, high power density, radiation-resistant semiconductors, switches, diodes, carbon nanotube conductors, magnetics and capacitors, and advanced thermal management techniques for the build-up of power converters and power distribution units.

| Material               | Young's<br>modulus<br>(GPa) | Tensile<br>Strength<br>(GPa) | Density<br>(g/cm <sup>3</sup> ) |
|------------------------|-----------------------------|------------------------------|---------------------------------|
| Single wall nanotube   | 1054                        | 150                          | 1.4                             |
| Multi wall<br>nanotube | 1200                        | 150                          | 2.6                             |
| Diamond                | 600                         | 130                          | 3.5                             |
| Kevlar                 | 186                         | 3.6                          | 7.8                             |
| Steel                  | 208                         | 1.0                          | 7.8                             |
| Wood                   | 16                          | 0.008                        | 0.6                             |

# **Synthesis of Novel Dispersants**





**PEGylated Corannulene Synthesis** 



Polycarbazole Oligomers











### Collaborations and Student Involvement

- We collaborate with Dr. Bin Chen from Advanced Studies Laboratories at NASA Ames Research Center.
- His research is focused on composite materials with complementary properties from polymer and inorganic nanostructures that increase the material mechanical strength, thermal conductivity, electric conductivity, and high-Z radiation shielding power.
- Applications include (1) control and structural components for deployable structure and habitat in space; (2) high throughput fuel cell anode, cathode, and electrolyte materials; (3) flexible solar cell with power output reaching to 200 kW/kg; and (4) radiation material with full spectrum stopping power and minimum secondary ions.
- Baris Yilmaz was hired as a graduate student to conduct the relevant research.
- > Three publications in the horizon.

# **Future Plans**

- Publication of recent results.
- Demonstrate feasibility of CNTs for applications as Transparent Electrodes in solar cell research.
- Collaboration with Dr. Bin Chen at AMES (joint experiments and proposal preparation)
- Planning to submit a pull proposal to National Science Foundation (DMR division) within a year.
- Proposal Coordinating Office at NASA Ames Research Center (will discuss this with our collaborator)
- NASA Headquarters for the call "Fellowships for Early Career Researchers".
- > Air Force?