Fabrication and Mechanical Testing of Nanowire Array Reinforced Nanocomposites

Xinnan Wang Mechanical Engineering Department Materials and Nanotechnology Program

Relevance to NASA:

- 2006 NASA Strategic Plan

goal 1: Fly the Shuttle as <u>safely</u> as possible until its retirement... goal 3: NASA's Aeronautics Research advances knowledge in core disciplines (including <u>materials</u>) to enable breakthroughs in Aeronautics."

- <u>New light and strong materials</u> are considered as one of the key ways to crew and space shuttle <u>safeties</u>, as well as improvement of <u>fuel efficiency</u>.

- This research could impact "<u>various areas of interest to NASA</u>, <u>including structural composites</u>, <u>radiation shielding</u>, <u>air filtration</u>, <u>energy storage</u>, <u>etc</u>". (Brett Cruden, NASA Ames Center for Nanotechnology)</u>

Electrospinning setup

Planned Fabrication

Schematic of coelectrospun fiber array

Electrospun fiber

Planned Mechanical testing

Mechanical testing on individual nanowires

Progress

3-pt bending on Mg₂B₂O₅

<u>Planned</u> <u>Mechanical testing</u>

Mechanical testing on as-electrospun fiber

Nanoindentation on PVA electrospun fiber (12 wt%)

<u>Planned</u> <u>Mechanical testing</u>

Mechanical testing of dogbone specimens

make dogbone specimensdesign a tensile tester

Dogbone die design

Male mould

Female mould

<u>Planned</u>

Mechanical testing

Mechanical testing of dogbone specimens

- make dogbone specimens
- design a micro/nano tensile tester

Progress

Hardware | Software

Collaborations:

- Prof. Annie Tangpong (ME, NDSU)
- Prof. Majura Selekwa (ME, NDSU)
- Prof. Xiangfa Wu (ME, NDSU)
- Prof. Chad Ulven (ME, NDSU)
- Prof. Nick Wu (MAE, West Virginia U)

Student involvement:

- Wyatt Leininger (ME grad, NDSU)
- Marshall McNea (ME undergrad, NDSU)
- Zhengping Zhou (MNT grad, NDSU)

Publications:

X. Wang, *et. al.*, "Capillary force induced elastic deformation on ZnS nanobeams" Proceedings of the ASME 2011 (Best Paper nominee)

Future plans:

- Exchange information with NASA Ames Center for Nanotechnology;

- Publish experimental results;

- Get further involved with NASA through Summer Research programs;

- Extend future proposals to nanocomposite friction damping (NASA's noise control mission).

Thank you!

