

Moons of Jupiter and NASA Resources

Caitlin Nolby North Dakota Space Grant Consortium

NASA Education

Can search for materials by subject and grade level

NASA Education

NASA Education

About NASA Education

For Educators For Educators Grades K-4 Grades 5-8 Grades 9-12 Higher Education Informal Education Find Teaching Materials Education TV Schedule Current Opportunities

For Students

NASA Kids' Club

Education Image Galleries

View image galleries on a wide variety of NASA topics.

> Go now

Do-It-Yourself Podcasts

Create your own

For Educators Educator Features and Articles Scientists Recreate Earth's Northern Lights Scientists have brought the Aurora Borealis into a lab at NASA's Langley Research Center. > Read More

> View

Archives

Special Announcements

Guidance for Education and Public Outreach Activities Under

Education Calendar

4	September 2013						
1	2	3	4	5	6	7	
8	9	10	11	12	13		
15	16	17	18		20	21	
22	23		25	26	27	28	
29							

Education Programs

Opportunities for students, educators and faculty:

NASA for Students

MISSIONS missions & launch dates

NEWS

releases

NASA.

MULTIMEDIA Images, videos,

Planetary Puzzles

T a billio

CONNECT Social media channels & NASA apps

ABOUT NASA Leadership, organization, budget, careers & more

•

Space Math at NASA

SpaceMath@NASA introduces students to the use of mathematics in todays scientific discoveries. Through press releases and other articles, we explore how many kinds of mathematics skills come together in exploring the universe.

Partnering NASA Missions

Astrophysics:

- Chandra Click here
- · Kepler Click here
- James Webb ST Click here

Farth Science:

SAGE-III - Under development

Heliophysics:

- · Hinode Click here
- IMAGE Click here
- MMS Click here
- RBSP Click here
- THEMIS Click here

Planetary:

- · Cassini Click here
- Dawn Mission Math
- EPOXI Click here
- InSight Click here
- · Juno Click here

Partnering NASA Programs

· Eves on the Solar System -Click here

March: NASA Press Release about SpaceMath@NASA- [Read Press Release] July: New math guide to Mars Exploration and the Curiosity Rover - [Click Here] August: Expanded and updated math guide on Black Holes posted- [Click Here] November: SpaceMath@NASA served 6,000,000th math problem at the website! December: New multi-media Grade 6 Math Modules added- [Click Here] February: New multi-media Grade 8 Math Modules added- [Click Here] April: The 7 millionth Space Math problem is downloaded

Math in the News

A behind-the-scenes look at the math in NASA press releases

reasoning. (PDF)

Problem 517: A Distant Supernova Remnant Discovered Students explore the size and speed of a distant supernova remnant nebula and compare it to the speed of the International Space Station. (PDF)

Problem 516: Hinode Observes Solar Eclipse from Space

Students use the geometry of a solar eclipse to estimate

the distance to the sun using simple proportional

Problem 515: Telling Time on Mars

Curiosity rover on Mars. (PDF)

Problem Archives

- I Problems 1 to 38
- II Problems 39 to 64
- III Problems 65 to 101
- IV Problems 102 to 148
- V Problems 149 to 233
- VI Problems 234 to 342
- VII Problems 343 to 428
- VIII Problems 429 to 478
- IX Problems 479 to Current

Problem 514: Solar Flares and the Stormy Sun

Students learn about the difference in time between a

work schedules change for scientists working with the

martian day and an Earth day, and use this to explore how

Students use simple averaging to explore the sunspot cycle and our suns changing activity levels in 2012 and 2013. (PDF)

(More problems from 2012-2013)

ceMath@

41DV Grades 6, 7 and 8: Standards-based, multi-media math resources featuring NASA eClips video segments, readings from NASA press releases, online interactive resources, and of course

math problems! [click here]

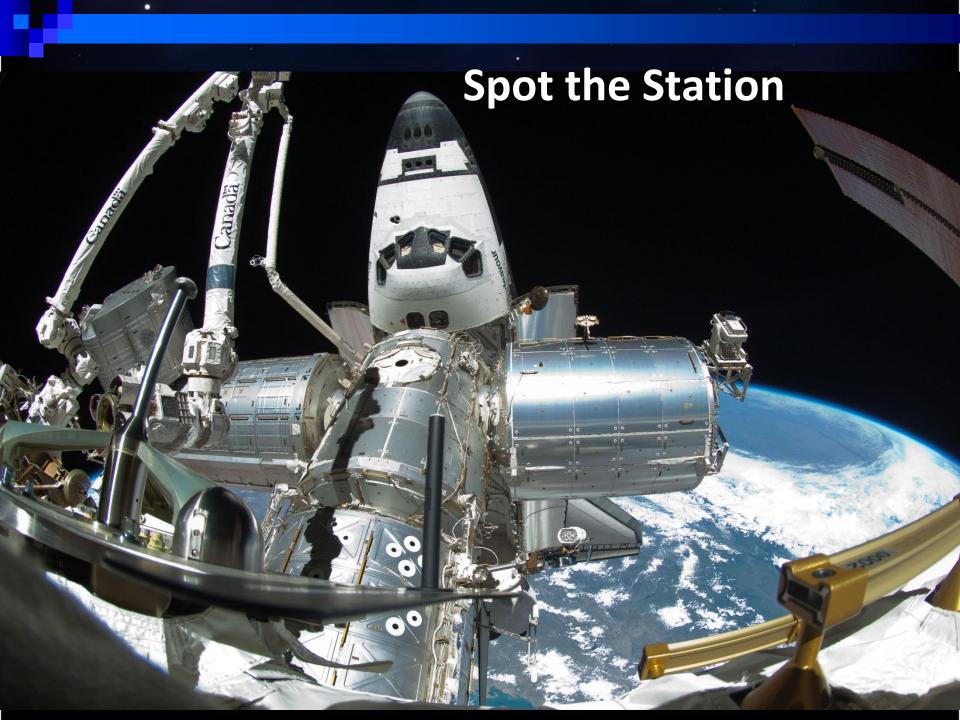
Year of the Solar System

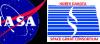
National Aeronautics and Space Administration

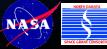
YEAR OF THE SOLAR SYSTEM

wards and Recognition Solar System Exploration Roadmap Contact Us Site Map Print This Pag

International Space Station - Live!






Mars Curiosity Rover

NASA – Lunar Reconnaissance Orbiter

Planetary Science Institute

Planetary Science Institute A Nonprofit Corporation

Extending Human Presence


HOME	ABOUT PSI	NEWS	RESEARCH	EDUCATION	OUTREACH	SUPPORT	CORPORATE SPONSORS
Educatio	on	Overview		0 10 KB 1		245527 AMAR (* 1944)	NAME AND AND ADDRESS OF A DECK AND A DECK ADDRESS OF A DECK ADDRESS OF A DECK ADDRESS OF A DECK ADDRESS OF A D
Profession Developme Workshops Ask An Exp Visualizatio Resources	nt ert n	enhance understa resource	e teacher training ir anding of physical p es, instructional roo	n science, deepen th processes on Earth a	e educational experi and beyond. We do s PSI's educational a	ence for children, this by offering edu	r solar system and beyond to and to improve the public/student icational programs, educational to evolve and grow, we invite you
Explorer's O Impact Crat	194						alert alert
Manual Manual Andrews	plorador de						
Demonstra	13		100		AR		
- Impact	Rocks						and the second
- Meteor	ites						
Special Top	pics						
	1						
ID	- T			1.1			


Planetary Science Institute

.

Impact Breccia	Tektite	Moldavite
1 cm		• •

Impact Melt Rock	Shocked Basement - Gneiss	Selenite
	1 cm	
1 cm		1 cm

Lunar and Planetary Institute

LUNAR AND PLANETARY

Education Resources

The Moon Search

TEACHERS AND FACULTY

OTHER SCIENCE EDUCATORS

PUBLIC ABOUT US

Analysis Groups

Teachers and Faculty

LPI K–12 Teacher Workshops,Institutes, and Field Trips

About Us

Exploration of the Moon and Asteroids by Secondary Students

LPI Summer Intern Program

Humans in Space Youth Art Competition

Educator Resources

Education Newsletter

LPI Higher-Education Faculty Programs

Find upcoming LPI teacher trainings in Earth and space science topics, and connect to resources from past workshops and field trips.

NEW AND UPCOMING

Cosmic Explorations: A Speaker Series The Universe is Out to Get Us and What We Can (or Can't) Do About It

Solar System Exploration Pre-Service Teacher Institute June 23–27, 2014 Application deadline: June 2

Mars Through Time Workshop July 8–11, 2014 at the University of New Mexico

NASA Summer of Innovation

H What to Consider When Selecting Content

Themed Units

Physical Science

Aeronautics

Gravity

Force and Motion

· Properties of Matter

Waves and Optics

Aeronautics Camp This camp centers on the

mathematical and

Designing for Space Camp

This camp centers on developing an

appropriate learning progression that focuses on the concepts necessary to learn about engineering.

Life Science Camp This camp centers

on the

characteristics of living things, astrobiology, exoplanets and adaptations to the space environment.

Grades 4-6

Life Science

Grades 7-9

Earth and Space Science

- Climate and Seasons
- Destination Mars
- Earth Moon Systems

Engineering

- Aeronautics
- Challenges
- Design Process

design principles of flight design.

Themed Camp Guides

- Body
- Food
- Life Out There?
- Plants
- Survival

NASA Discovery Program

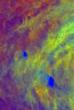
Discovery Program

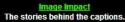
HOME

Home	
Program	
Missions	
News	
Education	
Multimedia	
Small Worlds	

Upcoming Mission Events

Dawn Orbit Insertion





Space School Musical The solar system comes alive!

Exo's Discovery Take the controls and explore with Exo!

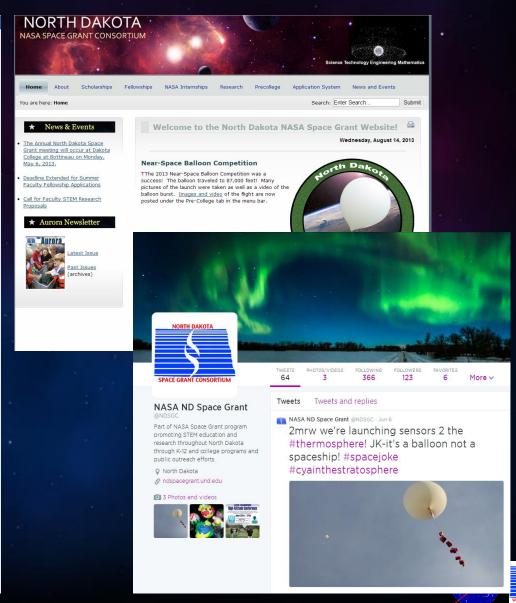
Search

Onward to Ceres Ion Propulsion Powers Dawn Through the Asteroid Belt GO

Looking Back at Us MESSENGER Takes Image of the Earth

MESSENGER to Snap Earth Mercury Orbiter Will Take Images of Earth and Moon

Read All about It! Latest Discovery and New Frontiers Newsletter Now Online



North Dakota Space Grant

uke Commont Shan

NDSGC K-12 Educator Email Listserv!

- Workshop opportunities
- New STEM education resources for the classroom
- NASA student contests/team competitions
- Professional Development opportunities
- Emails ~once a week

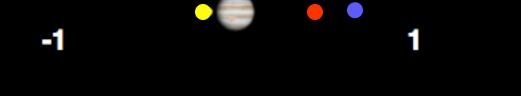
Galileo Galilei (1564 – 1642)

Jupiter as Seen by Galileo

Observing Jupiter

Night 1

-2


-1

1

Night 2

-2

Observing Jupiter

Night 3

2

-2

Make a Prediction for Night 4 ...

Night 4

1

2

-2

-1

Make a Prediction for Night 5 ...

Observing Jupiter

Night 5

-1

-2

1

Make a Prediction for Night 6 ...

Observing Jupiter

Night 6

1

2

-1

-2

Make a Prediction for Night 7 ...

Trying to Observe Jupiter

Night 7

1

2

-2

-1

Make a Prediction for Night 8 ...

Observing Jupiter

Night 8

-2

-1

Make a Prediction for Night 9 ...

Observing Jupiter

Night 9

-2

-1

1


Analyzing Jupiter Data

Work with your table group to analyze the Jupiter data.

• What patterns do you observe?

How would you describe the data?

Don't try to explain the data!

Modeling the Jupiter Data

Work with your table group and discuss the following questions:

- What does the data tell us about the motion of the 4 objects?
- Can you build a model that explains the observations?
- What do you think is the nature of these 4 objects?
- Other model ideas?

Reflecting on Galileo's Observations Video: Galileo's observations of the Moons of Jupiter.

When watching the video, think about what Galileo did as a scientist and why he did it.

- Why did Galileo look at Jupiter?
- Why did Galileo repeat his observation?
- What question did Galileo ask?
- What did Galileo do that helped to answer his question?

Understandings about the Nature of Science
Scientific knowledge is based on empirical evidence.


New technologies advance scientific knowledge.

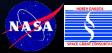
41

Did Galileo follow the "scientific method"?

Understandings about the Nature of Science

Science investigations use *diverse* methods and do not always use the same set of procedures to obtain data.

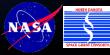
- Why do you think scientific knowledge changes?
- New Technologies allow us to collect new



Understandings about the Nature of Science

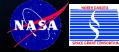
- Scientific explanations are subject to revision and improvement in light of new evidence.
- The certainty and durability of science findings varies.
 - Science findings are frequently revised and/or reinterpreted based on new evidence.

Do you think Galileo's work involved creativity?



Understandings about the Nature of Science

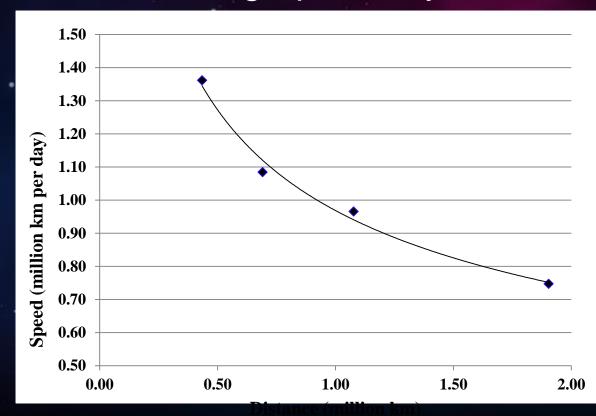
- Science is a human endeavor.
- Scientists and engineers rely on human qualities such as persistence, precision, reasoning, logic, imagination, and creativity.



Analyzing Data

We will assume circular motion.

Discuss with your table group how the data can be used to compare the times it takes each moon to complete an orbit.


Data Analysis Steps

- Determine the time it takes for your moon to complete one orbit. [unit = day]
- 2. Determine the distance to Jupiter (or the radius of the orbit). *[unit is million km]*
- 3. Determine the length of the orbital path for your moon. [unit is million km]
- Calculate the speed by dividing the length of the orbit by the time it takes the moon to complete it. [unit = million km / day]


Graphing the Data

Graph the data for speed versus distance and describe what this graph tells you.

