Application of a Fast Modulation Technique to Retarding Potential Analyzers

AMELIA GAGNON - UNIVERSITY OF NORTH DAKOTA

MENTOR: PAUL CRAVEN

SPACE ENVIRONMENTAL EFFECTS, EM50, MSFC

The Project:

Can the Smithsonian Astrophysical Observatory method for plasma measurement work for other RPAs?

What is a Plasma?

Equipment

Retarding
Potential
Analyzer (RPA)

Electron Source

Ion Source

What is an RPA?

Equipment: Retarding Potential Analyzer (RPA)

Equipment: Retarding Potential Analyzer (RPA)

The Project:

Can the Smithsonian Astrophysical Observatory method work for other RPAs?

Traditional Method

Apply DC voltage to retarding grid.
Wait specified time.
Measure collector current.

Repeat first step over specified voltage range.

Result is single Current vs Voltage curve.

Smithsonian Astrophysical Observatory (SAO) Method

Apply AC modulated voltage to retarding grid. Measure phase-locked collector current response.

Repeat first step over fixed range of energy windows.

Result is distribution of Current vs Energy.

Smithsonian Astrophysical Observatory (SAO) Method

Energy Window Number	Energy Window Lower Value (V)	Energy Window Upper Value (V)	Energy Window Width (V)
0	100	105	5
1	105	110.25	5.25
2	110.25	115.7625	5.5125
3	115.7625	121.5506	5.7881
4	121.5506	127.6282	6.0776
5	127.6282	134.0096	6.3814
6	134.0096	140.71	6.7004
			•••
46	898.5008	943.4258	44.9250
47	943.4258	990.6	47.1742

Results

Comparison of Methods

Traditional Method		SAO Method
	Beam Energy	
	Energy Spread	
	Flux	
	Energy Stability	
	Flux Stability	
X	High Speed	

Results

Comparison of Methods

Why is this important?

Faster testing

Real-time data feedback

Additional information with this method

Conclusion

This method worked

Group is going to do further testing with higher voltages

End goal: use this measurement method within the group

Questions?

References

- Case et al., Design of a Sun-pointing Faraday Cup for Solar Probe Plus, *Thirteenth International Solar Wind Conference*, Poster 5-2, Kona-Kailua, Big Island, Hawaii, 18-22 June, 2012.
- clker.com/cliparts/2/k/n/l/C/Q/transparent-green-checkmark-md.png
- content.mycutegraphics.com/graphics/sports/stop-watch.png
- K. W. Olgivie, et al., SWE, A comprehensive plasma instrument for the Wind spacecraft, Space Sci. Rev., vol. 71, p. 55, 1995.
- nasa.gov/images/content/397961main_HoH1.jpg
- science.nasa.gov/media/medialibrary/2007/04/27/27apr_nox_resources/Blitzschlag.jpg
- upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Red_x.svg/2000px-Red_x.svg.png